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Abstract:

Early detection of infectious disease is crucial for reducing transmission and facilitating early

intervention. We built a real-time smartwatch-based alerting system for the detection of aberrant

physiological and activity signals (e.g. resting heart rate, steps) associated with early infection

onset at the individual level. Upon applying this system to a cohort of 3,246 participants, we

found that alerts were generated for pre-symptomatic and asymptomatic COVID-19 infections in

78% of cases, and pre-symptomatic signals were observed a median of three days prior to

symptom onset. Furthermore, by examining over 100,000 survey annotations, we found that

other respiratory infections as well as events not associated with COVID-19 (e.g. stress, alcohol

consumption, travel) could trigger alerts, albeit at a lower mean period (1.9 days) than those

observed in the COVID-19 cases (4.3 days). Thus this system has potential both for advanced

warning of COVID-19 as well as a general system for measuring health via detection of

physiological shifts from personal baselines. The system is open-source and scalable to millions

of users, offering a personal health monitoring system that can operate in real time on a global

scale.

Introduction:

Early detection of infectious disease enables timely intervention, both to stop transmission and

address symptoms. Traditionally, detection has been limited to symptom onset when larger

physiological disturbances warrant medical attention. For respiratory viral infections, this is

typically several days to over one week post-infection while asymptomatic infections are likely to

not be detected at all 1-3. When symptom onset does occur, it is usually followed by either an

oral or skin temperature measurement or is more definitively diagnosed using a biochemical test

such as antigen detection or PCR 4,5.
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Wearable devices such as smartwatches have the potential to monitor individuals

continuously in real time and thus provide early detection of respiratory illnesses and other

infections 6-11. These devices can collect different types of physiological data such as heart rate,

step counts, sleep, and temperature. Recent studies have shown that wearables can be used to

identify early signs of infectious diseases such as Lyme disease 6 or respiratory viral infections,

including COVID-19 7-10, and may even permit pre-symptomatic detection 6,7. These respiratory

viral infection studies have focused primarily on detection at symptom onset and, even in the

case of pre-symptomatic detection, were performed retrospectively. Whether respiratory viral

infections and other stress events can be prospectively detected has not been examined nor

has a system been developed for performing this at scale. An early detection approach using a

monitoring and alerting system would enable early self-isolation, treatment, and allocation of

healthcare resources and as such could be an invaluable tool for containing pandemics.

In this study we created the first large-scale real-time monitoring and alerting system for

detecting abnormal physiological events, including COVID-19 infection onset, using agnostic

algorithms across different types of smartwatches. We designed a novel algorithm capable of

detecting outlier measurements associated with physiological stresses in real time, including

COVID-19 and other respiratory illnesses, and generating alerts for the device wearer. For

pre-symptomatic cases, we show that the system identifies 77% of COVID-19 illness at or

before the onset of symptoms. It also identifies asymptomatic cases and signals resulting from

vaccination. An association between symptoms and signals was investigated.

Results:

Study Overview

We constructed a highly secure, real-time alerting system for detecting abnormal periods of

stress such as viral infections using wearable devices (Fig. 1A) and conducted a test study

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 21, 2021. ; https://doi.org/10.1101/2021.06.13.21258795doi: medRxiv preprint 

https://doi.org/10.1101/2021.06.13.21258795
http://creativecommons.org/licenses/by/4.0/


approved by the Stanford University Institutional Review Board (protocol number 57022). The

system involves participant enrollment through a secure REDCap 12 e-consent system as a

plugin to the study app, MyPHD 13,14. After connecting the smartwatch through the app,

wearable data (heart rate, step count, and sleep analysis), and health information (e.g., surveys

of illness, symptom, medication, vaccination) were collected and securely transferred in real

time to the cloud for further analysis. Three online infection detection algorithms (NightSignal,

RHRAD, and CuSum) were hosted on the cloud and the results of one of them, NightSignal

algorithm were returned back to the participants in the form of real-time alerts (i.e., red or green

alert per day; an example of a signal associated with the alerts in a confirmed COVID-19

positive individual is shown in Fig. 1B). Participants were expected to annotate the alerts via

various surveys (COVID-19 test, activities, symptoms, etc). Medical recommendations (e.g.

self-isolation, get tested) were not allowed under our IRB protocol.

We enrolled a total of 3,246 participants between 27 November 2020 and 20 March 2021, of

whom 2,112 had wearables data. Of these, 1,016, 950, and 93 wore Fitbit, Apple Watch, or

Garmin watches, respectively, and the remaining wore other devices (Supplementary Fig. S1).

During the study, 2,076 participants received daily real-time alerts for physiological changes,

and 2,075 participants filled in at least one survey in order to annotate the alerts. Among all

participants, 207 individuals reported COVID-19 positive test results (67 were confirmed via

written documentation of their test result or verbal confirmation). Of those participants reporting

COVID-19 positive tests, 68 had sufficient wearable data around the time of COVID-19 infection

(35 Fitbit cases and 33 Apple Watch cases - Supplementary Table 1). Forty of these cases were

retrospective where individuals tested positive prior to enrollment; in 28 cases, the individuals

tested positive after enrollment.
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We also analyzed wearable data for three other categories of participants: 1) COVID-19

negative individuals: 1,213 participants who reported a COVID-19 negative test and never had a

positive test; 2) Potentially healthy individuals: 1,825 participants without any COVID-19 test

report; 3) Vaccinated individuals, 189 participants who received the COVID-19 vaccine

(Moderna or Pfizer-BioNTech), among them, 182 participants were fully vaccinated (i.e. both

doses, Supplementary Table 1). Vaccinated individuals could be either COVID-19 positive,

negative, or potentially healthy.

Participants who received an alert (or symptoms/activities) were expected to provide a

description of their diagnosis, symptoms and activities during that period. Diagnoses included

COVID-19, Adenovirus, Influenza, etc. Symptoms included cough, fever, headache, etc, as well

as severity (1-mild to 5-very severe). Activities included intense exercise, alcohol, travel, stress,

and other lifestyle factors which could alter physiological signals. Overall, 678 of 4,217 alerting

periods (two or more consecutive red alert days) were annotated by participants. 51 alerting

periods were associated with COVID-19 illness periods (14 days before to 21 days after

symptom onset).

COVID-19 triggers real-time alerts

We used three independent real-time alerting algorithms capable of detection and tracking of

physiological changes due to infections such as COVID-19. Two algorithms, online RHRAD and

CuSum, extended from our previous work 7, detect abnormal deviations from the baseline in

resting heart rates from two approaches in anomaly detection (see Methods). These two

approaches have been applied on dense Fitbit data, and have the potential to report an alarm at

hourly resolution. Although they can detect anomalies in high resolution, they are

computationally intensive. In order to be less computationally intensive and potentially scalable

to millions of users with various smartwatches, as well as achieving higher sensitivity while
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keeping the false-positive rate minimal, we developed a novel lightweight algorithm

(NightSignal) that uses a deterministic finite state machine (FSM)15 based on overnight resting

heart rate (RHR) (see Methods and Supplementary Fig. S2). For each individual we use the

streaming median of average overnight RHR as the baseline, and raise real-time daily alerts as

deviations from baseline as defined by the alerting state machine (see methods). Deviations in

successive nights (31 hr) triggers an alert. This algorithm runs on both the Fitbit and Apple

Watch and its features are presented in Supplementary Fig. S2. The NightSignal method has

the highest sensitivity (78%) compared to CuSum (54%) and RHRAD (44%), but produces the

same rate of false (non-COVID-19) signals.

Real-time pre-symptomatic and asymptomatic detection

We first examined how well the real-time alerting system detects COVID-19 at an early,

pre-symptomatic stage and in asymptomatic cases. Fig. 2 shows two examples of prospective

detection confirmed by COVID-19 positive tests (a Fitbit case on the top and an Apple Watch

case on the bottom) in which we detected elevated NightSignal alerts starting at least 3 and 10

days before symptom onset, respectively. The screenshots of the MyPHD app at the top of Fig.

2 show the real-time alerts that the corresponding participant receives every day. For the Fitbit

case, all three algorithms raise alerts before the symptom onset.

We also found 10 cases in which individuals reported testing positive but were asymptomatic;

direct communication with the participants confirmed they were asymptomatic. Alert signals

were found associated with diagnosed tests in eight of the cases. Two examples of

asymptomatic COVID-19 positive participants are shown in Fig. 3 for whom the alerts triggered

19 and 7 days before the COVID-19 diagnosis date, respectively.
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A summary of alert signals for all pre-symptomatic and asymptomatic cases is shown in Fig. 4.

In order to increase detection power, we included the results from 40 retrospective cases where

individuals tested positive prior to study enrollment, as well as 28 cases where individuals tested

positive after enrollment. Of these, 35 were Fitbit users and 33 were Apple Watch users. For the

COVID-19 positive participants, true positives (TP) are defined as the number of cases that

received red alerts from the algorithm before or at COVID-19 symptom onset (for

pre-symptomatic cases) or diagnosis (for asymptomatic cases) and false negatives (FN) are

defined as the number of participants who did not receive any alert within the same infection

detection window. Using the COVID-19 negative as well as potentially healthy participants, true

negatives (TN) are defined as the number of green alerts that have been correctly sent to these

participants and false positives (FP) are the number of red alerts that have been incorrectly sent

to these participants during non-COVID-19 periods. Of 68 COVID-19 positive participants (58

symptomatic and 10 asymptomatic), 53 cases received NightSignal alerts at or before symptom

onset (for pre-symptomatic cases) or diagnosis (for asymptomatic cases); hence a sensitivity

(true-positive rate) of 78% (Fig. 4A and Fig. 4B). The number was similar for Fitbit (74%) and

Apple Watch (82%). An additional five cases received alerts within 21 days post-symptom

onset, and eight cases did not yield any NightSignal alerts in the infection period (-21 to +21

days around the onset of symptoms). Please note that lack of sufficient wearable data may have

been a reason for some of these missed cases.

For the case of Fitbit which had hourly data, we were able to analyze the sensitivity of the online

RHRAD and CuSum algorithms; these were found to be 12/27 (44%) and 15/28 (54%),

respectively. To measure the performance of the algorithms on COVID-19 negative as well as

potentially healthy participants, the specificity (true negative rate) of the algorithms defined as

TN/TN+FP is as follows: NightSignal 169,980/(169,980+25,610) = 86.9%, Online RHRAD

65,695/(65,695+9,573) = 87.2%, and Online CuSum 85,225/(85,225+12,219) = 87.4%. As
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described below, these values are with respect to COVID-19 detection--other biologically

relevant events could trigger these alerts.

To examine the alerting period relative to symptom onset, we calculated the scores of red alerts

based on formula (1) and plotted the distribution with respect to the period of time centered

around symptom onset (see Fig. 4C and Methods). Across the 58 symptomatic participants, we

observed the maximum number of clustered alerts occur in a window of −4 to +11 days around

symptom onset.

Symptoms and activities raise resting heart rate signals

A wide variety of symptoms are associated with COVID-19 16,17. To examine illness progression,

we aggregated symptoms by both severity and number of individuals reporting across 21 days

relative to symptom onset (Fig. 5A). Consistent with the literature 18,19, most symptoms were

evident in the first 7-8 days of illness (fatigue, headache and feeling ill) although fatigue often

continued well post symptom onset. An example of an individual with many symptoms, some

which persisted for 3 or more weeks, is shown in Fig. 5B.

Out of 4,217 total red alert clusters (at least two or more consecutive red alert days) across the

entire study cohort, 678 had annotations by participants. Among them, we examined the red

alert clusters annotated by COVID-19 positive participants during the infection detection window

(14 days before to 21 days after symptom onset) vis-a-vis those annotated by COVID-19

negative participants (those receiving a negative diagnosis). The distribution of symptoms and

activities across the clusters was quite different depending on COVID-19 diagnosis (Fig. 5C).

Symptoms such as fatigue and poor sleep were generally present for both COVID-19 positive

and negative cases, but aches and pains, headaches, cough and feeling ill were less frequent in

the COVID-19 negative cases. Stress, intense exercise, and alcohol intake were activities most

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 21, 2021. ; https://doi.org/10.1101/2021.06.13.21258795doi: medRxiv preprint 

https://doi.org/10.1101/2021.06.13.21258795
http://creativecommons.org/licenses/by/4.0/


commonly associated with red alerts in individuals with COVID-19 negative diagnoses.

Furthermore, the mean duration of red alert clusters was higher (4.3 days) for COVID-19

positives than COVID-19 negatives (1.9 days).

Examples of the alerts and symptoms signals are shown longitudinally from a COVID-19

positive case (Fig. 6A), a COVID-19 negative case (Fig. 6B), a diagnosed Mycoplasma

pneumoniae infection (Fig. 6C), individuals annotating stress or work stress (Fig. 6D-E),

repeated alcohol consumption (Fig. 6F), and extended altitude change (Fig. 6G). These results

indicate other events can be attributed to red alerts when surveys are regularly reported. It may

also be observed that the RHR elevation during the red alert cluster is noticeably higher for the

COVID-19 positive case as compared to the COVID-19 negative and Mycoplasma cases. More

examples of different categories (COVID-19 positive, negative, and potentially healthy) are

shown in Supplementary Fig. S5. Finally, as reported previously, we note that many

non-COVID-19 alerts are evident over the winter holidays--more than other times of the year (a

1.4-fold increase in red alerts; Supplementary Fig. S7). In this study, this increase was evident

during the pandemic, whereas it was before the pandemic in our previous study, indicating these

events occur independent of the pandemic. It is possible that these holiday associated events

are due to increased stress, alcohol and/or travel.

COVID-19 vaccination often yields real-time alerts

On December 11, 2020 and December 18, 2020, the U.S. Food and Drug Administration (FDA)

issued the first emergency use authorization (EUA) to the Pfizer-BioNTech and Moderna

COVID-19 vaccines, respectively 20,21. These randomized vaccine clinical trials showed

94%–95% efficacy in preventing COVID-19 illness. Overall, localized side effects (e.g. aches,

rash) after vaccination have been shown to be mild; however, moderate-to-severe systemic side

effects, such as fatigue and headache were reported by some participants 21. In early January,
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we added COVID-19 vaccination surveys to the study app, MyPHD. As expected, alerts were

triggered one to a few days post-vaccination in many participants. Three examples of possible

effects of vaccination on NightSignal algorithm detection and symptoms are shown in Fig. 7A.

As longitudinally demonstrated in these examples, vaccination can trigger the alerts after both

doses or only one dose; however in some cases RHR overnight may increase only for a short

period (e.g., one night) and hence no alert is raised. To determine the effect of vaccination on

RHR overnight, we analyzed the average RHR overnight for five days before and after the

vaccination date. Interestingly, we observed that for the first dose the maximum RHR overnight

occurs the night of the vaccination in the case of Pfizer-BioNTech vaccine (an increase was not

evident for Moderna); for the second dose it occurs the first or second night after the vaccination

for the case of Moderna and Pfizer-BioNTech vaccines, respectively (Fig. 7B).

The symptoms reported for one week post vaccination were recorded from the surveys (Fig.

7C). After the first dose, the most frequently occurring symptoms with either vaccine are fatigue,

poor sleep, aches and pain. Post second dose, fatigue, headache, aches and pain top the list.

There are some striking differences as well between Pfizer-BioNtech and Moderna. Whereas in

the case of Pfizer-BioNtech, fever is reported after either dose, for Moderna, fever was not

reported after the first dose but almost 60% of participants reported a fever after the second

dose. Other differences can be observed from Fig 7C. Overall, these results demonstrate the

presence of symptoms associated with vaccination, particularly the second dose, and that the

effects of vaccination are detected using a smartwatch.

Discussion:

In this paper we introduce the first prospective real-time physiological stress detection and

alerting system that can detect early-onset illness using a smartwatch. It detects COVID-19 at or

prior to symptoms in 77% of the symptomatic cases and even identifies asymptomatic cases.
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Although the actual number of asymptomatic cases is hard to judge since most cases were not

tested with RT-PCR, we nonetheless found 8 out of 10 asymptomatic cases had alerts near the

test date (21 days before the diagnostic date). Detection results were similar for Fitbit and Apple

Watch models. In this study, medical recommendations were not provided to participants,

although doing so in future studies may provide increased healthcare value. Alerts were

generated early enough (a median of 3 days prior to symptom onset for COVID-19 cases) to

enable effective early self-isolation and testing.

Many of the alert-generating events detected in this study were not associated with COVID-19.

The majority of annotated alerts may be attributed to other events such as poor sleep, stress,

alcohol, intense exercise, travel, or other activities. In many of these cases the alerting events

would be easy to self-contextualize (intense exercise, alcohol, travel) and the participants would

be unlikely to take action. In other cases, such as COVID-19 negative diagnoses with

symptomatic illness, follow up testing would be expected to be valuable.

The large number of unannotated alerts may be due to: a) failure to annotate an alert, b)

asymptomatic infections, or c) other stressors. Since stress can trigger increases in RHR, a

major feature of our detection algorithms, this approach can potentially be used to monitor

mental health as well as physical health.

It is unclear why COVID-19 is not detected in all cases. Some of these individuals have a very

unstable baseline, and for others the abnormal signals deviating from the baseline are not large

enough to generate a signal. The inclusion of higher resolution data and/or other data types,

such as heart rate variability, respiration rate, skin temperature, SpO2 changes, galvanic stress

response, or other physiological features, is expected to improve detection performance for both

the number of events and earliest detection time. Such data will likely help distinguish the
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COVID-19 cases from other non-COVID-19 events whether due to pathogenic infections,

stressors, or other activities.

Notably, classic methods for illness detection have generally relied on resting oral or skin

temperature and comparison of an individual to a population average instead of their individual

baseline. Many COVID-19 infections do not appear to cause a fever. Moreover, skin

temperature is often measured using inaccurate infrared devices and thus may not be the best

method for infection detection. Resting heart rate and other longitudinal physiological measures

may be valuable in conjunction with temperature measurements for early and specific disease

detection. We have previously found that Lyme disease can be detected pre-symptomatically

using a smartwatch and pulse oximeter, and here we demonstrate that Mycoplasma infection

can be also identified (albeit not pre-symptomatically in this particular case). With continued

development, wearable platforms, including those that use a variety of physiological

parameters, can be used as a general method to monitor infectious disease, chronic

inflammation-related flares, and other health-related signals to improve healthcare at both the

personal and population levels and global monitoring for future pandemic outbreaks.

Methods:

Study participation

3,246 adult individuals of 18 to 80 years of age were recruited for this study under protocol

number 57022 approved by the Stanford University Institutional Review Board. Participants

were invited by social media, news, and outreach to participants in previous studies.

Participants registered using the REDCap survey system, and were then asked to install the

study app called MyPHD (available for iOS and Android devices). The app transfers their

wearable data (Fitbit via Fitbit secure OAuth 2.0 API, Apple Watch and Garmin via Healthkit
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repository, and other HealthKit and Google Fit compatible devices) with the Stanford research

team and analysis cloud. Next, the NightSignal algorithm generated alerts (green and red)

which were sent to the participants. Upon receiving alerts on the app, participants were asked to

annotate events with surveys covering symptoms, activities, diagnosis, medications, and

vaccination.

Online NightSignal

A previous study on exploring whether personal sensor data can help with COVID-19 detection

showed that the daily RHR on its own does not allow significant discrimination between

COVID-19-positive and COVID-19-negative participants; however, it has been shown that sleep

and activity data have a significant difference among the two groups 8. Besides, we observed

significant performance improvement when overnight RHR approach is taken compared to

choosing daily RHR, since this approach filters out short-range non-infection events such as

stress or intense exercise during the day (Supplementary Fig. S6). For these reasons, we

developed a novel algorithm based on the highest available resolution of RHR during sleep to

achieve more accurate real-time detection of infection diseases such as COVID-19.

1. Data pre-processing.

The pre-processing stage provides consistency among different sources (i.e., Fitbit and Apple

Watch) and handles missing data. The resolution of the retrieved distinct raw HRs and steps

data from Fitbit and Apple Watch differs (see Supplementary Fig. S3). To calculate the RHR

overnight for different devices, first we consider the heart rate records where steps are 0 and

then aggregate the RHR values by calculating the average RHR during nighttime (i.e., from

12AM to 7AM). In Supplementary Fig. S4A, we show that for most subjects (over 80%), median

of average RHR overnight is a stable and reliable baseline, since only after seven nights, it hits

a baseline close to the baseline over three months. In the case of missing nights, we impute the
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values for only up to one night by calculating the average RHRs from the night before and

immediately after the missed night.

2. Real-time alerting.

The NightSignal algorithm triggers the alerts based on the finite state machine (FSM) shown in

Supplementary Fig. S2. A FSM is defined by a list of its states, its initial state, and the inputs

(symbols) that trigger each transition and can produce output based on a given input and/or a

state. The NightSignal state machine as depicted in Supplementary Fig. S2, contains six states

and three outputs/colors (S0, S1, and S2 labeled with green alert, S3 and S4 labeled with yellow

alert, and S5 labeled with red alert) and three symbols as follows: (a) A i<Mi+3: For night i, the

average RHR overnight is less than three bpm above the baseline (median of averages of RHR

overnight for all nights up-to night i) -- The threshold of 3 was chosen since for all participants,

the median of fluctuation of medians of average RHR overnight over three months was only

three bpm (Supplementary Fig. S4B and Fig. S4C); (b) Ai=Mi+3: For night i, the average RHR

overnight is equal to three bpm above the baseline; (c) A i>=Mi+4: For night i, the average RHR

overnight is greater than or equal to four bpm above the baseline. Transition starts from initial

state S0 (green alert) and transition function takes one of the above six states and one of the

above three symbols, and returns a state with corresponding label (alert).

Online RHRAD

The current version of AnomalyDetect online model is built based on the previous offline model

from our previous study 7. It uses RHR data and splits it into training data by taking the first 744

hours as a baseline (one month) and test data by taking the next one hour data, and uses a one

hour sliding window to find anomalies in the test data in “real time”. If the anomalies occur

frequently within 24 hours, it will automatically create either warning (yellow) or serious (red)

alerts every 24 hours. Red alerts were set if the anomalies occurred continuously for more than
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five hours within each 24 hours period and yellow alerts were set if the anomalies occurred for

one or continuously for less than five hours and green alerts were set if there were no

anomalies.

Online CuSum

We extended the CuSum online detection algorithm proposed in our previous work7 into the

context of the real-time alerting system. Our previous work focused on the initial alarm in the

purpose of early detection. In the setting of alarming, the trend of CuSum statistics was tracked

in one hour resolution, the status of CuSum was evaluated in each 12 hours, and the alarm was

reported each day.

In the same way as in Mishra et al7, the baseline was constructed from a 28-days sliding

window in a personalized manner. If the data was missing more than 14 successive days, the

CuSum alerting system restarted. The alerting system proceeded through chunks of data (56

days) and then the results were combined from different chunks. Under the threshold of

95%-quantile of CuSum statistics during the baseline, the difference of the standardized RHR

residuals from the threshold was accumulated in each hour and the zero truncated positive

difference was added to the stream of the CuSum statistics. When the CuSum statistics became

significant at the first time compared to the statistics during the baseline (which serve as the null

distribution), the initial alarm was called. After the initial alarm, the average CuSum statistics

from each 12 hours was calculated and the CuSum entered to a yellow status. If the CuSum

statistics kept increasing in two successive 12-hours intervals, a red status was recorded in the

last 12-hours interval. If the CuSum statistics kept decreasing in two successive 12-hours

intervals, the status was turned back to green. In the case of all missing values in the 12-hours

interval, the status was recorded as NA. The alarms were sent at 9pm each day based on the

latest recorded status.

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 21, 2021. ; https://doi.org/10.1101/2021.06.13.21258795doi: medRxiv preprint 

https://doi.org/10.1101/2021.06.13.21258795
http://creativecommons.org/licenses/by/4.0/


Data availability:

De-identified raw heart rate and steps data used in this study can be downloaded from the

following publicly available link:

https://storage.googleapis.com/gbsc-gcp-project-ipop_public/COVID-19-Phase2/COVID-19-Pha

se2-Wearables.zip

All data will be made publicly available upon manuscript acceptance.

Code availability:

Code for the algorithms used in the manuscript are publicly available at:

Online NightSignal algorithm: https://github.com/StanfordBioinformatics/wearable-infection

Online RHRAD algorithm:

https://github.com/gireeshkbogu/AnomalyDetect/blob/master/scripts/rhrad_online_24hr_alerts_v

6.py

Online CuSum algorithm: https://github.com/mwgrassgreen/Alarm
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Figure legends:

Figure 1. Study overview. (A) Participants with a Fitbit and/or Apple Watch were asked to

share their wearable and survey data using the study mobile app, MyPHD. The app securely

transfers the de-identified data (heart rates, steps, and survey events) to the back-end for

real-time analysis. On the back-end, three online infection detection algorithms were deployed

and the result from one of the algorithms (online NightSignal) is returned back to the participants

in the form of red (indicating abnormal changes in resting heart rate overnight) and green

(indicating normal resting heart rate overnight) alerts on the app. (B) A real-world example for

real-time pre-symptomatic detection of COVID-19 using the online NightSignal algorithm for a

participant with Apple Watch. The alerts get triggered two days before the symptom onset date

and continue up to three days after the diagnosis date.

Figure 2. Examples of COVID-19 real-time pre-symptomatic detection. Online

pre-symptomatic detection for COVID-19 positive participants with Fitbit (top) using online

NightSignal, online RHRAD, and online CuSum algorithms respectively, and Apple Watch

(bottom) using online NightSignal algorithm. In the top panel, alerts in the NightSignal algorithm

get triggered three days before symptom onset and remain on for the following 15 days. In the

bottom panel, signals appear at least 10 days before the symptom onset and continue up to 10

days after that.

Figure 3. Examples of COVID-19 real-time asymptomatic detection. Online asymptomatic

detection for COVID-19 positive participants with Apple Watch (top) using online NightSignal

algorithm, and Fitbit (bottom) using online NightSignal, online RHRAD, and online CuSum

algorithms respectively.
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Figure 4. Summary of association of red alerts in the NightSignal algorithm with COVID-19

sick period. (A) Association of the initiation of red alerts in the NightSignal algorithm with

COVID-19 symptom onset in 58 positive participants with symptoms using a Fitbit or Apple

Watch with respect to the detection window of time centered around symptom onset (21 days

before to 21 days after symptom onset). NightSignal algorithm achieves pre-symptomatic

detection in 45 participants, and post-symptomatic detection in five participants; eight participants

did not receive any red alert associated with their COVID-19 symptoms during sickness detection

window. (B) Association of the initiation of red alerts in the NightSignal algorithm with COVID-19

positive test in asymptomatic participants using a Fitbit or Apple Watch. The plot shows 21 days

before and 21 days after the COVID-19 diagnosis date. NightSignal algorithm achieves detection

in eight participants; two participants did not receive any red alert associated with their COVID-19

with respect to asymptomatic detection window. (C) The plot shows the distribution of scores of

red alerts with respect to 21 days before and 21 days after the COVID-19 symptom onset date in

positive participants. Red bars indicate the scores of red alerts based on formula (1) below. Let D

= {d1 , d2 , … , dn} be a set of days and R = {dk , dk+1 , … , dK+m} be a set of days where

consecutive k red alerts have occurred, then the associated red alert score for each day in set R

is set to the size of set R (i.e., m+1). Note that the most clustered alerts appear around the

symptom onset date.

formula (1):

D (days) = {d1 , d2 ,  … , dn}   ,  R (consecutive red alerts) = {dk , dk+1 , … dK+m}

S (red alerts scores) = {s(dk)=m+1, s(dk+1)=m+1, … s(dK+m)=m+1}

Figure 5. Symptom progression and extent of association with clustered red alerts in

COVID-19 sick period. (A) Bubble plot representing day by day frequency count of individuals

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 21, 2021. ; https://doi.org/10.1101/2021.06.13.21258795doi: medRxiv preprint 

https://doi.org/10.1101/2021.06.13.21258795
http://creativecommons.org/licenses/by/4.0/


reporting symptoms during the second half of infection detection window (from symptom onset to

21 days later), with the size of the bubble and shading level indicative of the relative magnitude

of the frequency count and the median severity respectively. The percentage in the brackets

alongside each symptom indicates the aggregate over all the 21 days of the frequency count of

individuals reporting that symptom, as a fraction of total symptomatic COVID-19 positive

participants (58). Notably, fatigue is the most commonly reported symptom, whereas loss of

smell or taste seem to be the highest in terms of severity. (B) Illustrative example tracing the

symptoms of a COVID-19 positive participant from symptom onset to 21 days after, and

continuing on intermittently for additional two months thereafter. For each day, an aggregate

symptom score computed as the sum of the relative severities of the symptoms, each weighted

by its specificity to COVID-19, shows a bell shaped curve. Also notable is that fatigue stays on as

a long hauler symptom. (C) The bar plot shows the percentages of red alert periods (from

NightSignal algorithm) associated with each symptom/activity as annotated by both COVID-19

positive and negative participants. Except for fatigue and poor sleep, all other symptoms show a

wide margin between the higher alert association of the COVID-19 positives and the lower alert

association of the COVID-19 negatives.

Figure 6. Examples illustrating the association between RHR elevation (as they trigger real

time alerts from online NightSignal, online RHRAD, and online CuSum algorithms), and

symptoms/activities. (A) COVID-19 positive case: Alerts begin prior to symptom onset and

continue until diagnosis date. Higher RHR elevations seem to be triggered by severe fatigue,

fever and headache. (B) COVID-19 Negative case: Alerts even though present throughout the

symptom period, the magnitude of RHR elevation is noticeably lower. (C) Mycoplasma

Pneumonia case: Alerts begin post symptom onset and continue until a day before recovery.

Symptom scores follow a neat bell shaped curve. An interesting observation: On the 4th day, the

participant got tested for COVID-19 but was negative. However, symptoms continued to increase
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and when tested on the 8th day for other respiratory infections, Mycoplasma Pneumoniac was

detected. On the 14th day (5 days after antibiotic therapy), both symptoms and alerts receded.

(D) and (E) Stress, poor sleep and mood change correlate well with occurrence of alerts in the

COVID-19 Negative individuals. (F) Association between repeated alcohol consumption and

alerts. (G) Association between extended altitude change and alerts.

Figure 7. Association of red alerts in the NightSignal algorithm and RHR overnight with

COVID-19 vaccination. (A) Examples of the effect of COVID-19 vaccination on triggering the

alerts in the online NightSignal algorithm. (B) The significant effect of COVID-19 vaccination on

average RHR overnight in case of Moderna first dose, Pfizer-BioNTech first dose, Moderna

second dose, Pfizer-BioNTech second dose respectively from left to right. Note that, during the

vaccination window (five days prior to five days after vaccination), the maximum average RHR

often happens at the next night or two nights after the vaccination, especially in the second dose

(46% in Moderna and 54% in Pfizer-BioNTech). C, Distribution of symptoms reported for one

week after the first (top) and second dose (bottom) of COVID-19 vaccines, Moderna and

Pfizer-BioNTec. For the first dose, fatigue, poor sleep, and aches and pain are the most

frequently reported symptoms with either vaccine. For the second dose, aches and pain, fatigue,

and headache are the most reported symptoms in both Moderna and Pfizer-BioNTec vaccines.

Supplementary figure and table legends:

Table1. Cohort. Demographics, health characteristics, and COVID-19 test and vaccination info

of the Cohort.

Figure S1. Wearable devices distribution. 2,112 of participants had a smartwatch: 1,016 wore

Fitbits, 950 wore Apple Watches, 93 wore Garmin, and 53 had other devices. Note that we
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consider the device with the most amount of data as the main device in case of having more than

one device.

Figure S2. Deterministic Finite State Machine in NightSignal algorithm. The state machine

consists of six states, each labeled with an alert color and three symbols for transition between

states based on the current average RHR overnight and the deviation level from the baseline

(streaming median of averages of RHR overnight). For example, a red alert gets triggered if for

two consecutive nights, the average RHR overnight is at least four bpm above the calculated

baseline.

Figure S3. Comparing distribution of RHR overnight data in Fitbit vs. Apple Watch. To

show the distribution of RHR data in Fitbit and Apple Watch, RHR overnight data points have

been divided into 16 ranges (1-10, 10-20, etc) and each bar depicts the total number of nights

that falls into each group. Each participant is presented with a color. Note that for the majority of

participants, for most of the nights, there are 300 to 500 RHR overnight data points (i.e., almost

minute resolution) in the case of Fitbit. However the range differs considerably in Apple Watch;

the reason is that Apple Watch takes heart rate and step counts readings with different

resolutions based on the activities. Note that in the NightSignal algorithm, we do not set a

threshold for the minimum amount of data points required to aggregate per night. The first reason

is that in most cases, even a very few data points are sufficient to get a proper average RHR

overnight since we only consider HR records where the corresponding time interval (e.g. few

minutes) for step count is zero. The second reason for that is if we do so (e.g., set the threshold

to 40 data points), we will miss a significant amount of nights (e.g., first four bars in Fig. S3).

Figure S4.  Thresholds and parameters in the NightSignal algorithm. As we discussed

previously, the NightSignal algorithm uses the streaming median of average RHR overnight as
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the baseline. We believe that it is a proper individual healthy baseline as we show that the

fluctuation is insignificant and it usually deviates due to a long-term abnormal event (e.g.,

infection, medication consumption, vaccination). Fig. S4A shows the minimum number of nights

required to hit a baseline close to the baseline over three months (within ± two bpm from the

baseline - the reason behind choosing the threshold of two is that the baseline would still remain

in the green zone) for the majority of participants. As depicted in the figure, for over 80% of

participants, the proper baseline was observed after only seven nights. Fig. S4B depicts the

range (max-min) of medians of average RHR overnight during three months of data with the

median value of only three bpm. Similarly, Quer et al.22 studied the variability in individual resting

heart rate and showed that most subjects had a median weekly fluctuation in RHR of only three

bpm. Given the fact that we only consider RHR overnight, the median fluctuation in RHR

overnight is still three bpm even for a duration of three months. Similarly, Fig. S4C shows the

corresponding standard deviation that is very low (0.8).

Figure S5. More examples of alerts for COVID-19 positive, COVID-19 negative, and

potentially healthy participants. Shown are (from top to bottom): Signals for a COVID-19

positive case with mild and short-lasting symptoms. Note that this participant received zero red

alerts during a healthy period of seven months and only received two red alerts starting the

following night of symptoms onset date (the only period where the RHR overnight is much higher

than baseline for three consecutive nights); an example for a sick participant with moderate

symptoms followed by a  COVID-19 negative test. Note that RHR overnight period began to

increase three nights before the symptoms developed; the last two plots are the examples of

healthy participants who reported no illness or symptoms of any kind during the study (except

some poor sleep points for P174112). Both participants received no red alerts for over a three

months healthy period (Note that for P174112, alcohol consumption affects the RHR overnight

but the impact is either only for one night or not severe enough to trigger a red alert).
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Figure S6. Impact of non-infectious events on NightSignal alerts (all day vs. overnight).

Examples of the impact of different events (e.g., home and work stress, travel, and intense

exercise) on the alerts based on two configurations: all day vs. overnight. For each participant,

comparing the plots shows that the NightSignal algorithm reduces possible false positives due to

non-infectious events by analyzing RHR overnight.

Figure S7. Impact of winter holidays on NightSignal alerts. As shown previously, there is a

noticeable increase in the number of alerts during winter holidays -- particularly late December

and beginning of January -- (“holiday bump”) due to the higher rate of travel, alcohol,

entertainment, stress, and illness compared to other times of the year.
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Figure 5: Symptom Progression and Extent of Association 
with Clustered Red Alerts in COVID-19 Sick Period

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 21, 2021. ; https://doi.org/10.1101/2021.06.13.21258795doi: medRxiv preprint 

https://doi.org/10.1101/2021.06.13.21258795
http://creativecommons.org/licenses/by/4.0/


Intense Exercise
Poor Sleep

Stress
Headache

Diarrhea
Aches and Pains

Fever
Fatigue

NightSignal Alerts
RHRAD Alerts
CuSum Alerts

Sy
m

pt
om

 
Sc

or
e

Ac
tiv

ity
Sy

m
pt

om
s

50
100
150

11 11 11 11 1113

73 88
122

145

20
26

-0
7-

29
20

26
-0

7-
30

20
26

-0
7-

31
20

26
-0

8-
01

20
26

-0
8-

02
20

26
-0

8-
03

20
26

-0
8-

04
20

26
-0

8-
05

20
26

-0
8-

06
20

26
-0

8-
07

20
26

-0
8-

08
20

26
-0

8-
09

20
26

-0
8-

10
20

26
-0

8-
11

20
26

-0
8-

12
20

26
-0

8-
13

20
26

-0
8-

14
20

26
-0

8-
15

20
26

-0
8-

16
20

26
-0

8-
17

20
26

-0
8-

18
20

26
-0

8-
19

20
26

-0
8-

20
20

26
-0

8-
21

20
26

-0
8-

22
20

26
-0

8-
23

20
26

-0
8-

24
20

26
-0

8-
25

20
26

-0
8-

26
20

26
-0

8-
27

20
26

-0
7-

28

20
26

-0
7-

27

20
26

-0
7-

26

20
26

-0
7-

25

20
26

-0
7-

24

Al
er

ts

Re
st

in
g 

H
ea

rt
Ra

te
 O

ve
rn

ig
ht

75

65

55

150
Symptom Onset COVID-19 Positive Diagnosis

50

100

150

Aches/Pains
Sore Throat

Fatigue
Cough

Fever
NightSignal Alerts

RHRAD
CuSum

75

129
102

63
84102

75 8172
45

20
28

-0
5-

01

20
28

-0
4-

30

20
28

-0
4-

29
20

28
-0

5-
02

20
28

-0
5-

03
20

28
-0

5-
04

20
28

-0
5-

05
20

28
-0

5-
06

20
28

-0
5-

07
20

28
-0

5-
08

20
28

-0
5-

09
20

28
-0

5-
10

20
28

-0
5-

11
20

28
-0

5-
12

20
28

-0
5-

13
20

28
-0

5-
14

20
28

-0
5-

15
20

28
-0

5-
16

20
28

-0
5-

17
20

28
-0

5-
18

20
28

-0
5-

19
20

28
-0

5-
20

20
28

-0
5-

21

Sy
m

pt
om

 
Sc

or
e

Sy
m

pt
om

s
Al

er
ts

Resting Heart
Rate Overnight

65
55
45

Symptom Onset
COVID-19 Negative Test

Overall Feel
Medication

Shortness of Breath
Sore Throat

Cough
Headache

Fever
Aches and Pains

Fatigue
NightSignal Alerts

RHRAD Alerts
CuSum Alerts

Amoxicillin (Antibiotic Course)

20
25

-0
2-

01

20
25

-0
1-

31

20
25

-0
1-

30
20

25
-0

2-
02

20
25

-0
2-

03
20

25
-0

2-
04

20
25

-0
2-

05
20

25
-0

2-
06

20
25

-0
2-

07
20

25
-0

2-
08

20
25

-0
2-

09
20

25
-0

2-
10

20
25

-0
2-

11
20

25
-0

2-
12

20
25

-0
2-

13
20

25
-0

2-
14

20
25

-0
2-

15
20

25
-0

2-
16

20
25

-0
2-

17
20

25
-0

2-
18

20
25

-0
2-

19
20

25
-0

2-
20

50
100
150

3439 48 4658788787
10194

5339392114 5 5 0 0

Resting Heart
Rate Overnight

65
55

Sy
m

pt
om

 
Sc

or
e

Sy
m

pt
om

s
Al

er
ts

Symptom Onset
COVID-19 Negative Test

Mycoplasma Pneumonia

Altitude Change
NightSignal Alerts

RHRAD Alerts
CuSum Alerts

20
25

-0
9-

25

20
25

-0
9-

24

20
25

-0
9-

23

20
25

-0
9-

22

20
25

-0
9-

21

20
25

-0
9-

26
20

25
-0

9-
27

20
25

-0
9-

28
20

25
-0

9-
29

20
25

-0
9-

30
20

25
-1

0-
01

20
25

-1
0-

02
20

25
-1

0-
03

20
25

-1
0-

04
20

25
-1

0-
05

20
25

-1
0-

06
20

25
-1

0-
07

20
25

-1
0-

08
20

25
-1

0-
09

20
25

-1
0-

10
20

25
-1

0-
11

20
25

-1
0-

12
20

25
-1

0-
13

20
25

-1
0-

14
20

25
-1

0-
15

20
25

-1
0-

16

Resting Heart
Rate Overnight

65
55

Menstruation
Large Meal

Alcohol Consumption
NightSignal Alerts

65
75
85

20
27

-0
4-

21
20

27
-0

4-
22

20
27

-0
4-

23
20

27
-0

4-
24

20
27

-0
4-

25
20

27
-0

4-
26

20
27

-0
4-

27
20

27
-0

4-
28

20
27

-0
4-

29
20

27
-0

4-
30

20
27

-0
5-

01
20

27
-0

5-
02

20
27

-0
5-

03

Resting Heart
Rate Overnight

Other Activities
Poor Sleep

Work Stress
NightSignal Alerts

65
75

20
25

-0
1-

06
20

25
-0

1-
07

20
25

-0
1-

08
20

25
-0

1-
09

20
25

-0
1-

10
20

25
-0

1-
11

20
25

-0
1-

12
20

25
-0

1-
13

20
25

-0
1-

14
20

25
-0

1-
15

20
25

-0
1-

16
20

25
-0

1-
17

20
25

-0
1-

18
20

25
-0

1-
19

20
25

-0
1-

20
20

25
-0

1-
21

20
25

-0
1-

22

Resting Heart
Rate Overnight

Fatigue
Poor Sleep

Mood Change
Stress

NightSignal Alerts

65
75

20
27

-0
8-

26
20

27
-0

8-
27

20
27

-0
8-

28
20

27
-0

8-
29

20
27

-0
8-

30
20

27
-0

8-
31

20
27

-0
9-

01
20

27
-0

9-
02

20
27

-0
9-

03
20

27
-0

9-
04

20
27

-0
9-

05
20

27
-0

9-
06

20
27

-0
9-

07
20

27
-0

9-
08

20
27

-0
9-

09
20

27
-0

9-
10

20
27

-0
9-

11
20

27
-0

9-
12

20
27

-0
9-

13
20

27
-0

9-
14

20
27

-0
9-

15
20

27
-0

9-
16

20
27

-0
9-

17
20

27
-0

9-
18

Resting Heart
Rate Overnight

Beginning Illness
Currently Ill
Recovered from Illness
Generally Healthy

Overall Feel

Severity
Mild
Mild-to-moderate
Moderate
Severe
Very Severe

Yellow Alert
Red Alert

Symptom Scoring
100 4xHigh Grade
50 3xHigh Grade
40 2xHigh Grade
30 1xHigh Grade
20 Medium Grade
10 Low Grade
3 Very Low Grade
0 Normal

Present

A

B C

D E

F G

Key

P101056 (Fitbit)

P194111 (Fitbit)

P694388 (Fitbit) P106637 (Fitbit)

P271946 (Fitbit)

P657917 (Apple Watch)
P167775 (Fitbit)

Figure 6: Illustrative Examples Tracing Alerts Associated with Symptoms and Activities
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Figure S2: Deterministic Finite State Machine in NightSignal algorithm
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Figure S3:  Distribution of RHR Overnight Data in Fitbit vs. Apple Watch
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Figure S4: NightSignal Baseline Parameters and Fluctuation of 
Medians of Average RHR Overnight for Three Months 
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Figure S5: Examples of COVID-19 Positive and Negative, and Potentially Healthy Cases  

Day

Day

Day

Day

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 21, 2021. ; https://doi.org/10.1101/2021.06.13.21258795doi: medRxiv preprint 

https://doi.org/10.1101/2021.06.13.21258795
http://creativecommons.org/licenses/by/4.0/


Extreme Work Stress

All Day

Overnight

All Day

Overnight

Intense Exercise

Re
st

in
g 

he
ar

t r
at

e 
ov

er
ni

gh
t 

Re
st

in
g 

he
ar

t r
at

e 

Work and Home Stress

Travel

All Day

Overnight

Re
st

in
g 

he
ar

t r
at

e 
Re

st
in

g 
he

ar
t r

at
e 

ov
er

ni
gh

t 

 P
44

46
86

 - 
Fi

tb
it 

(W
or

k 
st

re
ss

 im
pa

ct
)

 P
66

41
93

 - 
Fi

tb
it 

(H
om

e 
st

re
ss

 a
nd

 tr
av

el
 im

pa
ct

)
 P

68
77

09
 - 

Ap
pl

e 
W

at
ch

 (I
nt

en
se

 E
xe

rc
ise

 Im
pa

ct
) 

Figure S6: Impact of Di!erent Events on Signals (All Day vs. Overnight)
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